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1. Let {Xn, n ≥ 1} be a sequence of independent and identically distributed random
variables.

(a) Show that P{| Xn |> n infinitely often} = 0 iff X1 ∈ L1(P ). [8]

(b) Suppose that X1+...+Xn
n → Y almost surely, for some random variable Y . Show

that X1 ∈ L1(P ) and Y = EX almost surely. [7]

2. (a) Show that the distribution of a bounded random variable is characterized by its
moments. [6]

(b) Let Y ∼ N(0, 1). Let X := eY . Show that X has density

f(x) =
1√
2π

1

x
e−(log x)

2
, 0 < x <∞

and has moments EXn = e
n2

2 , n ≥ 1 [3]

(c) Show that for n ≥ 0,

∞∫
0

xnf(x) sin(2π log x) dx = 0

where f(x) as in 2(b). Hence deduce that the result in (a) is false for unbounded
random variables. [6]

3. (a) Let µ be a probability measure on R with µ(Z) = 1. Let ϕ be the characteristic
function of µ. Show that if x ∈ Z,

µ{x} =
1

2π

π∫
−π

e−itxϕ(t) dt

[9]

(b) Show that for α > 2, ϕα(t) := e−|t|
α
is not a characteristic function.

Hint: If φα were the characteristic function of X, consider Var (X) [6]

(c) If X = (X1, ... Xn) is a random vector in Rn, λ ∈ Rn and λ . x =
n∑
i=1

λi xi, show

that σ(X) = σ{λ.X, λ ∈ Rn}. Hence show that X is independent of the r.v Y
iff for all λ ∈ Rn, λ . X is independent of Y . [5]

4. (a) Let {Xn, n ≥ 1} be an i.i.d sequence with EX1 = 0, EX2
1 = 1. Let Sn =

X1,+ ... +Xn√
n

. Let ϕn(t) be the characteristic function of Sn. Suppose ϕn(t) →
e−t

2/2 for all t ∈ R. Then show (without using the Levy continuity theorem)
that Sn converges weakly to the standard normal distribution. [10]

(b) Let {Xn,l, 1 ≤ l ≤ kn} be a triangular array with EXn,l = 0,
kn∑
l=1

EX2
nl = 1 and

for each n ≥ 1, {Xn,l, 1 ≤ l ≤ kn} are independent r.v. Suppose {Xn,l} satisfy
the Lindberg condition. Then show that {Xn,l} is a null array i.e., for all ε > 0,

lim
n→∞

max
1≤l≤kn

P{| Xn,l |> ε} = 0.

[5]
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5. Let for x ∈ R, p(x, y) be a probability density on (R,B). Let p(x, y) be jointly Borel
measurable. Using the Kolmogorov consistency theorem construct a discrete time,
continuous state space Markov Chain {Xn}n≥0 with X0 ≡ 0 and

P (Xn ∈ B | Xn−1 = x) =

∫
B

p(x, y)dy.

[10]

6. Let (Xt)t≥0 be a standard one dimensional Brownian motion.

(a) Define X0
t := Xt − tX1, 0 ≤ t ≤ 1. Show that (X0

t ) is a Gaussian process and
compute its mean and covariance function. Note that X0

0 = X0
1 ≡ 0. [6]

(b) Show that σ{X0
t , 0 ≤ t ≤ 1} is independent of σ{X1}. Hint: the former σ-field

is generated by finite dimensional events. [6]

(c) Let X·(ω), X0
· (ω) denote the trajectories t → Xt(ω), t → X0

t (ω), in C[0, 1]. Let
P 0 be the law of (X0

t ) on C[0, 1] i.e., for A ⊂ C[0, 1], a Borel set, P 0(A) :=
P (X0

· ∈ A) = P ◦ (X0
· )
−1(A). Show that P 0(A) = P (X0

· ∈ A | X1 = 0) by
showing that

lim
ε↓0

P (X· ∈ A,−ε < X1 < ε)

P (−ε < X1 < ε)
= P 0(A)

for every Borel set A in C[0, 1]. [8]

7. Let (Xt)t≥0 be a standard d-dimensional Brownian motion.

(a) Let λ ∈ Rd. Show that {eλ·Xt−
|λ|2
2
t, t ≥ 0} is a martingale with respect to the

natural filtration of (Xt). [5]

(b) Let x ∈ Rd. Show that almost surely, the set {t : Xt = x} ⊂ [0,∞) has Lebesgue
measure zero. [5]
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