Semestral Exam Max Marks:100 Date : Nov 10, 2014 Time:3 hours

- 1. Let $\{X_n, n \ge 1\}$ be a sequence of independent and identically distributed random variables.
 - (a) Show that $P\{|X_n| > n \text{ infinitely often}\} = 0 \text{ iff } X_1 \in L^1(P).$ [8]
 - (b) Suppose that $\frac{X_1+\ldots+X_n}{n} \to Y$ almost surely, for some random variable Y. Show that $X_1 \in L^1(P)$ and Y = EX almost surely. [7]
- 2. (a) Show that the distribution of a bounded random variable is characterized by its moments. [6]
 - (b) Let $Y \sim N(0,1)$. Let $X := e^Y$. Show that X has density

$$f(x) = \frac{1}{\sqrt{2\pi}} \frac{1}{x} e^{-(\log x)^2}, \ 0 < x < \infty$$
$$X^n = e^{\frac{n^2}{2}}, n \ge 1$$
[3]

and has moments $EX^n = e^{\frac{n^2}{2}}, n \ge 1$

(c) Show that for $n \ge 0$,

$$\int_{0}^{\infty} x^{n} f(x) \sin(2\pi \log x) \, dx = 0$$

where f(x) as in 2(b). Hence deduce that the result in (a) is false for unbounded random variables. [6]

3. (a) Let μ be a probability measure on \mathbb{R} with $\mu(\mathbb{Z}) = 1$. Let φ be the characteristic function of μ . Show that if $x \in \mathbb{Z}$,

$$\mu\{x\} = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-itx} \varphi(t) \ dt$$

[9]

[6]

- (b) Show that for $\alpha > 2$, $\varphi_{\alpha}(t) := e^{-|t|^{\alpha}}$ is not a characteristic function. Hint: If ϕ_{α} were the characteristic function of X, consider Var (X)
- (c) If $X = (X_1, ..., X_n)$ is a random vector in $\mathbb{R}^n, \lambda \in \mathbb{R}^n$ and $\lambda \cdot x = \sum_{i=1}^n \lambda_i x_i$, show that $\sigma(X) = \sigma\{\lambda.X, \lambda \in \mathbb{R}^n\}$. Hence show that X is independent of the r.v Y iff for all $\lambda \in \mathbb{R}^n, \lambda \cdot X$ is independent of Y. [5]
- 4. (a) Let $\{X_n, n \ge 1\}$ be an i.i.d sequence with $EX_1 = 0, EX_1^2 = 1$. Let $S_n = \frac{X_{1,+} \dots + X_n}{\sqrt{n}}$. Let $\varphi_n(t)$ be the characteristic function of S_n . Suppose $\varphi_n(t) \rightarrow e^{-t^2/2}$ for all $t \in \mathbb{R}$. Then show (without using the Levy continuity theorem) that S_n converges weakly to the standard normal distribution. [10]
 - (b) Let $\{X_{n,l}, 1 \leq l \leq k_n\}$ be a triangular array with $EX_{n,l} = 0$, $\sum_{l=1}^{k_n} EX_{nl}^2 = 1$ and for each $n \geq 1$, $\{X_{n,l}, 1 \leq l \leq k_n\}$ are independent r.v. Suppose $\{X_{n,l}\}$ satisfy the Lindberg condition. Then show that $\{X_{n,l}\}$ is a null array i.e., for all $\epsilon > 0$,

$$\lim_{n \to \infty} \max_{1 \le l \le k_n} P\{|X_{n,l}| > \epsilon\} = 0.$$

5. Let for $x \in \mathbb{R}$, p(x, y) be a probability density on $(\mathbb{R}, \mathcal{B})$. Let p(x, y) be jointly Borel measurable. Using the Kolmogorov consistency theorem construct a discrete time, continuous state space Markov Chain $\{X_n\}_{n\geq 0}$ with $X_0 \equiv 0$ and

$$P(X_n \in B \mid X_{n-1} = x) = \int_B p(x, y) dy.$$
[10]

[8]

- 6. Let $(X_t)_{t>0}$ be a standard one dimensional Brownian motion.
 - (a) Define $X_t^0 := X_t tX_1, 0 \le t \le 1$. Show that (X_t^0) is a Gaussian process and compute its mean and covariance function. Note that $X_0^0 = X_1^0 \equiv 0$. [6]
 - (b) Show that $\sigma\{X_t^0, 0 \le t \le 1\}$ is independent of $\sigma\{X_1\}$. Hint: the former σ -field is generated by finite dimensional events. [6]
 - (c) Let $X_{\cdot}(\omega), X_{\cdot}^{0}(\omega)$ denote the trajectories $t \to X_{t}(\omega), t \to X_{t}^{0}(\omega)$, in C[0, 1]. Let P^{0} be the law of (X_{t}^{0}) on C[0, 1] i.e., for $A \subset C[0, 1]$, a Borel set, $P^{0}(A) := P(X_{\cdot}^{0} \in A) = P \circ (X_{\cdot}^{0})^{-1}(A)$. Show that $P^{0}(A) = P(X_{\cdot}^{0} \in A \mid X_{1} = 0)$ by showing that

$$\lim_{\epsilon \downarrow 0} \frac{P(X_{\cdot} \in A, -\epsilon < X_1 < \epsilon)}{P(-\epsilon < X_1 < \epsilon)} = P^0(A)$$

for every Borel set A in C[0, 1].

- 7. Let $(X_t)_{t\geq 0}$ be a standard *d*-dimensional Brownian motion.
 - (a) Let $\lambda \in \mathbb{R}^d$. Show that $\{e^{\lambda \cdot X_t \frac{|\lambda|^2}{2}t}, t \ge 0\}$ is a martingale with respect to the natural filtration of (X_t) . [5]
 - (b) Let $x \in \mathbb{R}^d$. Show that almost surely, the set $\{t : X_t = x\} \subset [0, \infty)$ has Lebesgue measure zero. [5]